作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第一篇论文介绍了目前从事这一研究领域的许多学科的数字双胞胎趋势的详尽文献综述。然后,通过将数据分类为两个主要类别:基于数据流的方向,将数字双胞胎建模和双胞胎启用技术分为两个主要类别:物理到虚拟和虚拟物理。最后,本文在未来十年中提供了有关数字双技术轨迹的观点,并介绍了一些新兴研究领域,这些领域可能在未来的数字双胞胎研究中很可能有很大的用途。在本综述的第二部分中,讨论了不确定性量化和优化的作用,展示了电池数字双胞胎,并共享了数字双胞胎未来的更多观点。
translated by 谷歌翻译
在本文中,我们利用了最近的物理信息神经网络(PINN)的进步,并开发了一种基于通用的Pinn的框架,以评估多状态系统(MSS)的可靠性。提议的方法包括两个主要步骤。在第一步中,我们将MS的可靠性评估作为使用Pinn框架的机器学习问题。构建具有两个单独损耗组的前馈神经网络以编码由MS中的常微分方程(ODES)管理的初始条件和状态转换。接下来,从多任务学习的角度来看,我们解决了Pinn中的背部传播梯度大小的高不平衡问题。特别是,我们将损失函数中的每个元素视为个别任务,采用名为Projecting冲突渐变(PCGRAD)的梯度手术方法,其中任务的渐变将投影到具有冲突梯度的任何其他任务的常规平面上。梯度投影操作显着降低了训练销时梯度干扰引起的有害影响,从而将PINN的收敛速度加速到高精度解决方案到MSS可靠性评估。通过提出的基于Pinn的框架,我们在几乎不受时间或依赖状态转换和系统尺度从小到介质时,研究其对MSS可靠性评估的应用程序的应用。结果表明,基于Pinn的框架在MSS可靠性评估中显示了通用和显着性能,并且Pinn中的PCGrad掺入了溶液质量和收敛速度的大量提高。
translated by 谷歌翻译
分布式随机梯度下降(SGD)方法已广泛应用于大型深度学习,梯度集体方法至关重要,以确保分布式深度学习系统的培训可扩展性。已广泛采用分布式SGD过程广泛采用诸如解释的集体通信,以减少通信时间。但是,allreduce会引发大带宽资源,而在许多情况下大多数梯度稀疏,因为许多梯度值是零,并且应该有效地压缩以用于节省带宽。为了减少稀疏梯度通信开销,我们提出了一种稀疏的剪影减速器(S2减速器),这是一种具有收敛保证的新型草图的稀疏梯度聚合方法。 S2减速机仅通过Count-Sketch和Bitmap压缩非零梯度来降低通信成本,并实现有效的已有SGD培训的有效恢复运算符。我们在五种培训模型中对四种最先进的方法进行广泛的评估。我们的结果表明,S2减速机收敛到相同的准确性,降低了81 \%稀疏通信开销,与最先进的方法相比,实现了1.8 $ \ times $ Speedup。
translated by 谷歌翻译
In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used by easily embedding it into most off-the-shelf detection methods. Our method, termed PolarMask, formulates the instance segmentation problem as predicting contour of instance through instance center classification and dense distance regression in a polar coordinate. Moreover, we propose two effective approaches to deal with sampling high-quality center examples and optimization for dense distance regression, respectively, which can significantly improve the performance and simplify the training process. Without any bells and whistles, PolarMask achieves 32.9% in mask mAP with single-model and single-scale training/testing on the challenging COCO dataset.For the first time, we show that the complexity of instance segmentation, in terms of both design and computation complexity, can be the same as bounding box object detection and this much simpler and flexible instance segmentation framework can achieve competitive accuracy. We hope that the proposed PolarMask framework can serve as a fundamental and strong baseline for single shot instance segmentation task. Code is available at: github.com/xieenze/PolarMask.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译